A187 845  PROGRAM TRANSLATION VIA MSTIACT

CAMBR] IFICIAL INTELLIGENCE
UNCLASSIFIED DEC 86 RI-N949 NOG#14-83-K-0124

ION AND
REINPLEMENTATIONCU) MASSACHUSETTS INST OF TECH
RIDGE ART LAB R C WATERS
F/G 12/%




EJ e
.l

“

.
Ll Wy

n.."an.’

v"f

n.;.\.".!’

-, J'

(

R

PR

2

o
:E
i

3
w,
(¥

FFFEE
| 1
L

E

22

rer
T
rr
. —

= | IE
lizs flis pie

MILROCCE Y RES  UTION TEST CHAR:

NAL ONA sdibr & v ‘”\N['Akl"w’_;r‘)t:‘.f

L A . . "
-.}bf .A_'('L\‘w-:}:n-d‘. P

“y St
e
Y

Py

r.
»
-~
L
L4
v




-

- - - - e ™ - N
v N VN ~ N v e LS "(."'\'J"-‘\J‘:-r_'f_'vf‘\-"."-'-f‘-q’\.-“" oy
DN A N A R R v T A s AN S

REPORT DOCUMENTATION PAGE | BEFORE COMPLETING FORM
' AEEsa- nuWMBER i2 GOVT ACCEISION NO| ) RECI®IENT'S CATALDSS NnuMBER
AIM~949
& TIT_E (and Subtitie) S TvYRE OF MEPOART § PEMOD COVERED
Program Translation Via Abstraction ATI-Memo

and Reimplementation

C PERFORMING ORG. REPOARY NUMBER

T AyTmMONM/ g, @ CONTRACTY OR GRANT NUMBER(s);

Richard C. Waters NSF: MCS-7912179
IBM (no #) and SPERRY (no#)

10. PROGAAM ELEMENT PROJECT, TASK
AREA & WOARK UNIT NUMBENS

9 PERFOAMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

AD-A185 845

' CONTROLLING OFFICE NAME AND ADODRESS 12. REPORT DATE

Advanced Research Projects Agency December, 1986

1400 Wilson Blvd. 13. MUMBER OF PAGES

Arlington, VA 22209 43

14 WMOMITORING AGENCY NAME & ADODRESS(I dilterent rom Centrelling Oflice) 18. SECURITY CLASS e/ this repert)
Office of Naval Research UNCLASSIFIED

Information Systems

Arlington, VA 22217 19e. gg.t‘:tg&’:llrmAnowoo-ualuomc

16 DISTRIQUTION STATEMENRT (of thte Report)

Distribution is unlimited.

17 OISTRIBUTION STATEMENT (of 1Mo sbatract entered In Bleck 30, Il ditlorent from Repert)

18 SUPPLEMENTARY NOTES ‘%7

None

a

S

19 KEY WORDS (Continue en reveree side Il nececsary and idontity by bleck mamber)

Program translation Program Analysis
Artificial Intelligence

Campilation

Programmer's Apprentice

E

20 ABSTRACT (Continue on revevee aide Il necosssry and idoniity by deoch mamber)
Essentially all program translators (both source-to-source and compilers)operatd
via transliteration and refinement. The source program is first transliterated
into the target language on a statement by statement basis. Various refinementg
are then applied in order to improve the quality of the output. Although accept
able in many situations, this approach is fundamentally limited in the quality

of output it can produce. In particular, it tends to be insufficiently sensitive

to global features of the source program and too sensitive to irrelevant local
details. [continued on reyer ‘

DD . S 1473 €oiTion OF 1 NOV 318 OBSOLETE UNCLASS IFIED
S/N 0:02-014-6601)

SECUMITY CLASHZICATION OF THIS AAGE (Whan Dare Bnierec

- e L v
Tl e

-
MR
-

P T
P I N
“n L

APy FATRTRTANRIS N W w7 w0 W @ T 7270

! A ale ats RS KN : .
SNILES3IFIED / 2
TET .o T 2 _a%% F TAY TN DF Tw § PaGE ‘Mhyn lets Friered

ONR: N0O0014-85-K-0124 (DARPA)

B
-
" o
»

v

s,

'I"..q
.
[, Y

.,
e S !

la s

2L,

s

4

A

. R LN 2
Shl a2 s

-" 17'
T el mT AN~




R e S N N e Y N o T W W W N Y R W W P U W T W P WS T WV WO Wl W W WP W W
'

(BLOCK #20 ABSTRACT-continued)

. This paper presents an alternate translation paradigm - abstraction
and reimplementation. Using this paradigm, the source program is first
analyzed in order to obtain a programming language independent, abstract
understanding of the computation performed by the program as a whole.
The program is then reimplemented in the target language based on this
understanding. The key to this appraoch is the abstract understanding
obtained. It allows the translator to see the forest for the trees -
benefiting from an appreciation of the global features of the source
program without being distracted by irrelevant details. __ ..

Translation via abstraction and reimplementation is one of the goals
of the Programmer's Apprentice project. A translator has been constructed
which translates Cobol programs into Hibol (a very high level, business
data processing language). A compiler has been designed which generates
extremely efficient PDP-11 object code for Pascal programs. Currently,
work is proceeding toward the implementation of a general purpose,
knowledge-based translator.
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Essentially all program translators (both source-to-source translators and com-
pilers) operate via transliteration and refinement. The source program is first
transliterated into the target language on a statement by statement basis. Various
refinements are then applied in order to improve the quality of the output. Al-
though acceptable in many situations, this approach is fundamentally liniited in
the quality of the output it can produce. In particular, it tends to be insufficiently
sensitive to global features of the source program and too sensitive to irrelevant

. local details.

“ This paper presents an alternate translation paradigm—abstraction and reim-

' plementation. Using this paradigm, the source program is first analyzed in order to )
obtain a programming language independent, abstract understanding of the com- "2 for
putation performed by the program as a whole. The program is then reimplemented CRAA] J
in the target language based on this understanding. The key to this approach is the TASG
abstract understanding obtained. It allows the translator to see the forest for the ceood
trees—benefiting frowm an appreciation of the global features of the source programn
without being distracted by irrelevant details.

Translation via abstraction and reimplementation is one of the goals of the Pro-
grammer’s Appreutice project. A translator has been constructed which translates
Cobol prograins into llibol (a very high level, business data processing language). A LT
compiler has been designed which gencrates extremely efficient PDP-11 object code o
for Pascal programs. Currently, work is proceeding toward the implementation of
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I - Introduction

The goal of this paper is to present the idea of translation via abstraction and reimplementation and compare it
with the standard approach of transhion via transliteration and refinement. In the main, this is done through a
discussion of the basic ideas behind the two approacies and a discussion of the designs for two translators based
on abstraction and reimplementation.  In addition, the paper presents a detailed description of an implemented
prototype translator which demonstrates the cfficacy of the abstraction and reimplementation approach.

‘The process of program translation takes a program written in some source language and creates an cquivalent
program in some target language. The primary goal of translation is to create a syntactically correct program in
the target language which computes the same thing as the source program in more or less the same way. Fora
wide varicty of source and target languages, satisfying this goal is relatively straightforward.

In addition to the primary goal of correctness, translation typically has onc or more subsidiary goals such as
cfficiency or readability of the arget program. In general, the most difficult aspect of translation is not producing
correct output, but rather attempting to satisfy these subsidiary goals. The main problem is that typically the
subsidiary goals of translation arc at best orthogonal to. and at worst in conflict with, the goals ot the original
author of the source program.

‘I'ranslations vary widely in quality.  An optimal translation would produce the program which the original
authors would have produced had they been writing in the target language in the first place and had they had the
desired subsidiary goals in mind.

The most coommon cxample of program translation is compilation — the translation of a program written in a
high level language into machine language. In compilation, the key subsidiary goal is achicving cfficicncy in the
target program. ‘The work on compilers has demonstrated that acceptable efficiency can be obtained. However,
there is still a long way to go. Even the best optimizing compilers fall short of the cfficiency which programmersy
can achicve writing dircctly in machine language.

Another important application of program translation is source-to-source program translation. In this
situation. a program is translated from a language which may be in some way obsolcte into another language
where it can be more casily maintained. In source-to-source translation, the key subsidiary goal is achicving
readability (and hence maintainability) of the target program. ‘The use of automatic translation during
maintenance has been severely limited by the fact that readability of the target program is very difficult to achieve.

Most current program translators operate by a process which could be called translation v translicration and
refinement. In this process. the source program is first transliterated into the target language on a line by {ine basis
by translating cach line in isolation. Various refincments are then applied in order to improve the larget program
produccd. As discussed in Scction 11, this process has a number of advantages. However, it is inherently himited
in the extent to which it can satisfy the subsidiary goals of translation. In particular, translation via transhiteration
and refinement tends to be insalficiently sensitive to global features of the source prograan and too sensitng to
welev at locd deiants ot the omiee progiam,
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reimplementation. In this process, the source program is fistCanalyzed i order to obtam an abstract description of e
the computation being performed.  ‘The program is then reimplemented in the target kinguage based on the
abstract description. "T'he central feature of this approach is the abstraction step. 1t allows the translator to benefit

from a global understanding of what the source program does.  In addition, the abstraction step deliberately
discards information about dctails of the source program which are not refevant o the translation process.
Although inherently more complex than translation via transliteration and refinement, translation via abstraction

and rcimplementation is capable of producing very high quality results.

Scctions 1V & V present examples of program translators which operate via abstraction and reimplementation,
‘The first example translator (Satch [10]) is a prototype system which transtates Cobol programs into Hibal. (Hibol
is a very high level, non-procedural, business data processing language.) Satch is notable because it produces
extremely readable output. The second example (Cobbler [9)) is a proposed compiler which translates Pascal
programs into PDP-11 assembler fanguage. Cobbler is notable because it produces extremely efficient output.

Scction VI describes efforts within the Programmer’s Apprentice project [28] toward the construction of a
general purpose. knowledge-based translation system operating via abstraction and reimplementation, Iy arder to
support very high quality translation, this system will have cxtensive knowledge of how algorithms can be

expressed in the source and target languages. In order to make the system general purpose, this knowledge will be

represented declaratively in a library of algorithun schemas. Each schema will specify how a class of algorithns h
can be rendered in the source or target language. -
Section VIT discusses other work which is relevant to the idea of translation via abstraction and
reimplementation.  In particular, rescarch on natural language translation has shown that obtaining a global
undenstanding of the source text is essential for producing high quality translations.
I - Translation via Transliteration and Refinement
As shown in Fig. 1, translation via translitcration and refinement operates in two steps. The transliteration step
translates the source program on an clement by clement basis. (The word transliteration {as opposed to
rransiation) is used to connote the idea of literal translation where cach clement is translated in isolation without
regard for context.) The output of the transliteration step is expressed cither directly in the target language or in
an mmtermediate language which is semantically similar to it
source r ram
\TRANSLITERATION
REFINEMENT
target-like intermediate > target program
Fig. 1. ‘Translation via transliteration and refinement. —.

The refinement step tikes the output of the transhieration step and  ipplies various Correciness prosy e
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the efficiency of the code produced. I the mtermediate linguage is not identical to the target language. then the

refinement step also performs the (oopically trivial) translation fromy intermediate to final forn.

Fxample of Transtiteration and Refinement

As an cxample of translatic.. via transliteration and refinement, consider how this approach could be used to
translate Fortran [34] programs mto Ada [37] programs, Fig. 2 shows a Fortran program BOUND which is taken
from the 1BM Fortran Scientific Subroutine Package [35]. Fig. 3 shows the result of the transliteration step of the
translation process. Fig. 4 shows the final result after the refinement step of the translation process.

‘The program BOUND has six input parameters and four output parameters. ‘The paramcter A is a matrix which
contains a st of observations of a number of variables presumably determined in some experiment. ‘The integer
parameters NO and NV specify the number of observations and the number of variables respectively.  (As s
generally the case in the programs in the Scientific Subroutine Package, although A is logically a matrix, it 1s
declared to be a vector and all of the index computations arc explicit in the program.)

‘The parameter S is a vector of length NO. The vector § sclects the observations which should be considered by
the program BOUND. An observation J is considered only if S(J) is non-zcro.

The paramcters BLO and BHI arc vectors of length Nv. For cach variable, these vectors specify lower and upper
bounds respectively for the observation values. The integer parameter [ER is used to return an error code. If
BLO(I)>BHI(I) for any I then IER is sct Lo one and computation is aborted; otherwise it is sct to zero.

'The parameters UNDER. BETW. and OVER are also vectors of length NV. For each variable 1, the program BOUND
counts how many of the sclected observations are under BLO(I), how many are between BLO(I) and BHI(T)
inclusive, and how many arc over BHI(I). Thesc counts arc stored in the variables UNGER, BETW, and OVER

respectively which are the principal outputs of the program BOUND.
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5
"
4
'.
N SUBROUTINE BOUND(A,.S,BLO,BHI,UNDER,BLTW,OVFER,NO,NV, IER)
DIMENSION A(1),S(1),8LO(1),BHI(1) ,UNDER(1),BETW(1),0VER(1)
: I[ER = 0
h DO 10 I = 1, NV
» IF (BLO(I)-BHI(I)) 10,10,11
X 11 IER = 1
GO TO 12
p 10 CONTINUE
. DO 1 K =1, NV
. UNDER(K) = 0.0
» BETW(K) = 0.0
) 1 OVER(K) = 0.0
DO 8 J =1, NO
IJ = J-NO
g IF (S(J)) 2.8,2
5 2D0 71 =1, NV
. IJ = TJ+NO
. If (A(1J)-8LO(I)) 5,3.,3
; 3 IF (A(1J)-BHI(I)) 4,4.6
: 4 BETW(I) = BETW(I)+1.0
GO T0 7
5 UNDER(I) = UNDER(I)+1.0
! GO T0 7
- 6 OVER(I) = OVER(I)+1.0
¥ 7 CONTINUE
v 8 CONTINUE
12 RETURN
END
Fig. 2. The Fortran program BOUND.
: The transliteration process is illustrated by Fig. 3. Each part of the program is translated focally. The Fortran
parameters arc all turned into "in out™ parameters of appropriate types in the Ada program. They are given the
: mode "in out” because every Fortran parameter can potentially be both an input valuc and an output valuc. The
Fortran assignment statements are converted into equivalent Ada assignments. This requires very little change
because Fortran is essentially a subsct of Ada when it comes to arithmetic cxpressions and assignment statements.
. Fortran arithmetic Ifs arc cxpanded into cquivalent Ada "if then else” statements branching to the
g appropriate labels. Arithmetic IfFs where two of the labels are the same are treated as special cases in order to
avoid the need for temporary variables. Each Fortran DO is expanded into an cquivalent Ada "1o0p™. The Ada
"for" construct cannot be used because Ada “for” tests for termination at the top of the loop while Fortran DO
tests for tennination at the bottom of the foop. Fortran CONTINUE, RETURN and GO TO arc turned into Add
"nuil”, "return”, and "goto” respectively. 'he only aspect of the transliteration which is not totally local is that
X the Fortran program has to he scanned in order to determine what variables are used in the program <o that
Y appropriate variable declarations can be inscrted at the beginning of the Ada program.
[ I N P T N T Tt Y L T VPRI LI TR
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type VECTOR is array (INIEGER range <>) of REAL;

procedure BOUND(A.S
NO,

I.1J,J.K:

,BLO.BHI ,UNDER ,BETW,OVER:
NV.IER: in out INTEGER) is
INTEGER;

in out VECTOR;

begin
IER := 0;
I :=1;
loop:
if BLO(I)-BHI(I)<=0.0 then goto L10:
else goto L11;

<<L11>>

<<L10>>

end if;

IER
goto
null;
I :=

=1

L12;

1+1;

exit when IDNV;
end loop;
K := 1;
loop
UNDER(K) := 0.0;
BETW(K) := 0.0;
<<L1>> OVER(K) := 0.0;
K := K+1;
exit when KD>NV;
end loop:
J = 1;
lo0p
1J := J-NO;
if S(J3)=0.0 then goto L8;
else goto L2;
and if;
I := 1;
lo0p
IJ := IJ+NO;
if A(IJ)-8L0(I)<0.0 then goto L5;
else goto L3;
end if;
if A(IJ)-BHI(1)<=0.0 then goto L4;
else goto L6;
end if;
BETW(I) :=
goto L7;
UNDER(I) :=
goto L7;
OVER(I)
null;
I := 1I+1;
exit when I>NV;
end loop;
<<L8>> null;
J = J+1;
exit when JVNO;
end loop:
<<L12>> return;
end BOUND;

KL2>>

<CL3>>

<KL BETW(I)+1.0;

L5 UNDER(I)+1.0;

CCLB>Y 1= OVER(1)+1.0;

KL7>>

Fig. 3. A transliteration of Iig 2 into Ada.
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As is typically the case with transliteration, the program in Iig. 3, although correct, does not do a good job of %5’
satisfying the subsidiary goals of tanslation (in this case readability).  Fig. 4 shows the final result after the

refinement step of the translation process.

type VECTOR is array (INTEGER range <>) of REAL;

procedure BOUND(A,S,BLO,BHI: VECTOR;
UNDER,BETW,0OVER: in out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is
I,IJ,J,K: INTEGER;
begin
1ER :=
I :=1;
toop
if BLO(I)-BHI(I)<=0.0 then goto L10; end if;
IER := 1;
return;
KL10X> 1 := I+1;
exit when I>NV;

0:

end loop;:
K := 1;
loop;

UNDER(K) := 0.0;

BETW(K) := 0.0;

OVER(K) := 0.0;

K := K+1; s

exit when K>NV; ."
end loop; .
Jd = 1
loop;:

1J := J-NO;

if §(J)=0.0 then goto L8; end if:

I := 1;

Toop:

IJ := IJ+NO;

if A(IJ)-BLO(I)<0.0 then goto L5: end if;
if A(IJ)-BHI(I)>0.0 then goto L6; end if;
BETW(I) := BETW(I)+1.0:
goto L7;
<<L5>> UNDER(I) := UNDER(I)+1.0;
goto L7;
<<L6>> OVER(I) := OVER(I)+1.,0:
KKL7>> 1 := I+1;
exit when IDNV;
end loop:
KLBY> J := J+1;
exit when J>NO;
end loop:
end BOUND:

Fig. 4. A refined transliteration of Fig 2 into Ada.

Fig. 4 is derived from Fig. 3 by applying a number of correctness-preserving transformations.  Complex
"if then else” statements which have clauses which branch to the next statement are simplified to remove these =%
clauses. The branch to a "return” statement is replaced by a "return™ statement. Unnecessary "aut1” e
sticinents, "return” staenients, wwd Tbels e remeneds Inetesd of civine ol the paramctess the moe
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purcly syntactic way by noting that parameters which are never assigned o cannot he “out™ and parameters
which arc never read cannot be "in”.

There are a number of transformations which could in principle have been applicd o the program which have
not been.  For example, the computation involving UNDER, BETW, and OVER could be rearrange into one large
"if then else”. However, in keeping with the kinds of refinements typically supported by source-to-source
translators (see Scction VII), two criteria were used in order to decide which refinements to perform.  Iirst, no
support was provided for transformations which require cither control flow or data flow analysis of the program.
This rules out transformations like the one suggested above.

Sccond. the main emphasis was placed on transformations which only look at an adjacent pair of statements,
The only transformation which is more complicated than this is the one which refines the mode ot the parameters.
This transformation has (o scan the program in order to determine which parameters are read and assigned.
However, it does not do an actual data flow analysis. If it did, it would realize that UNDER. BETW. and OVER arc
actualty "out”™ parameters and not "in out” parameters since they cannot be read until after they have been
assigned.

Fig. 4 is rcadable, but still not as good as one would like. In particular, it falis far short of the goal of
producing the program the programmers would have produced had they been writing in Ada — it is a
Fortran-style Ada program instcad of an Ada-style Ada program. As will be discussed in Scction 111, better
translations of Fig. 2 can be achicved by means of translation via abstraction and rcimplementation,

Figs. 3 & 4 are not the output of any particular translator. Rather, they are hypothetical examples intended to
ilustrate the process of transliteration and refinement. However, it is not clear that any existing source-to-source

translator produces output which is significantly better than Fig. 4 (see Section VII).

Advantages of Transliteration und Refinement

Translation via transliteration and refinement has several advantages. Most importantly, it uses a divide and
conqucr strategy in order to satisfy the goals of translation. The basic goal of obtaining a correct translation is
achicved by the transliteration step. The refinement step need only guarantec that it preserves this correctness.
The subsidiary goals of the translation (e.g.. efficiency or readability) are achieved by the refinement step. The
transliteration step is greatly simplified by not having to worry about the subsidiary goals.

Another advantage is that the localized nature of the transliteration step makes it casy to encode the basic
knowledge needed for translation.  This knowledge is cconomically represented by stating how cach of the
constructs in the source language should be converted into equivalent constructs in the target language. The
translitcration step need not have any knowledge about how special combinations of source constructs can be
represented as special combinations of target constructs.  (This latter kind of knowledge is the province of the
refinement step which presumably knows how to fine tune cumbersome combinations of target constructs.)

\ Bl advantage of ranslidion via transditeration and retinement s that it makes it casy to construct tamilies
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- might construct a family of compilers which compile various high level kinguages mito the same machine linguage "~
o and which share the same refinement step.
': Transliteration Is Not Always Practical
'
: Although it works satisfactorily in many situations, tanslation via translitcration and refinement has some
N fundamental disadvantages. "T'o begin with, it assumcs that transliteration is practical. This in turn depends on the
~ assumption that cach of the source language constructs can be individually translated into target language
: constructs in a practical way. Untortunately, this is not always the case.
W The main way in which transliteration can be blocked is that the source language may sepport a prunitive
- construct which is not supported by the target language. For example, consider translating from a language which
v supports GOTOs into a language which docs not, or from a language which supports multiple assignments to a
E variable into a functional language which does not. In the case of Fortran and Ada, consider the fact that Ada has
b’ nothing which is cquivalent to the Fortran EQUIVALENCE statement,
! The primary source of incompletencss in current translators is primitive constructs which cannot be
{ transliterated. Current translators typically just ignore non-translitcratable constructs. cither refusing o process
; source programs which contain them or copying them unchanged from the source to the target.  Human
2 intervention is required cither to remove them from the souice or to fix them up in the target. e
) A second way in which transliteration can be blocked is that the source and target lunguages ma: have )
..:' constructs which, although they correspond closely, differ in significant semantic details. Most of the ume these
j detatls may not matter for translation. However, when they matter they are liable to matter a lot. For exammple,
R consider translating into a language which forces complex data structures to be copied when they are assigned o a
e variable from a language which docs not, or between languages which differ in their variable scoping rules. In the
: casc of Fortran and Ada, consider the fact that vector arguments to Fortran subroutines arc passed by reference
‘ : while Ada specifies that it is undefined whether or not vector arguments will be copicd or passed by reference.
: The primary source of incorrectness in current translators is constructs which can be transtitcrated
' straightforwardly most of the time but only with great difficultly (or not at all) in certain hard-to-detect situations.
. Current translators typically just usc the straightforward transliteration all of the time without giving any
_ indication that there might be a problem. (For example. the transliteration in Fig. 3 blindly assumes that it docs
not matter how the vector parameters get passed.) Human intervention is required in order o correct any
': problems which arise in the target program produced.
o
g Transliteration Complicates Refinement
A sccond fundamental disadvantage of translation via transliteration and refinement is an unintended
- byproduct of its greatest advantage. The principal virtue of ihe transliteration and refinement approach is that it _T-“
2 simplifics the problem of satisfying the primary poal of transkation (e, correctness) by factaring out the problem -
: of satstore the cubsidiny coads of consaton Untontne oot thes Liotcane o en e o0 aphicsos the Lok of
.

e

D




Y Y TP O O KON T X P TP TR T T IS A Sl SalPal Sob £ 00 e Il M s S AR S L

’4{,

satisfying the subsidiary goals. This is particularly unfortunate since the subsidiary goals are usually harder to
satisfy than the primary goal,

The basic reason why wtanslation via transliteration and refinement complicates the task of satisfying the
subsidiary goals of translation is that typically the process of transliteration does not merely ignore the subsidiary
goals, it works against them. Simply put, whether or not the original source program is good from the point of
view of the subsidiary goals of the translation, the output of the translitcration step is alniost always guaranteed to
be bad from this point of view.

The most obvious way in which transliteration makes things difficult for later refinciment is that, more often
than not, the transliteration of a given construct in the source language requires the use of a circumlocution in the
target language. The only time when this can be completely avoided is when the target language posscss a
sermantically identical construct.  Examples of both of these cases can be seen in Fig. 3. The DO loops in the
Fortran program arc converted into cumbersome "loop™ statements in the Ada program. In contrast, the
assigniment statements remain essentially unchanged.

A morc subtle way in which transliteration makes things difficult for later refinement is that it tends to obscure
the key features of the algorithm implemented by the program being translated. ‘Transliteration doces this through
both camouflage and the creation of decoys. The mass of circumlocutions produced by transliteration act as
camouflage hiding the key features. Decoys (features which are prominent but actually unimportant) are created
because the code produced is sensitive to unimportant details of the source. For example, Fig. 3 would have
looked quite different if the Fortran programmer had used logical I¥s instcad of arithmectic IFs. A kind of
indirect camoufiage is produccd due to the fact that the transliteration step is insensitive to global considerations,
Transliteration typically renders a given construct in exactly the same way even if the context would suggest that it
should be translated differently.  For example, all of the paramcters are given the mode "inout” in Fig. 3
whether or not this is actually necessary given the way they are used.

A final way in which transliteration makes things difficult for later refinement is that useful information about
the source program can get lost. As an example of this, consider translating from a language (such as Ada) where
the order of evaluation of the arguments of a function call is undefined to a language where the order is defined.
In this situation. straightforward transliteration will define an evaluation order and thercby discard the
information that many evaluation orders arc cqually acceptable. This loss of information makes it hard for the
refinement step to apply transtormations which are not applicable to the chosen evaluation order but which are

applicable to one of the evaluation orders which was not chosen,

Applicability of Transliteration and Refinement

The primary requircment for the applicability of translation via transliteration and refinement is that
translitcration must be practical.  For this to be the case, the target language must support all of the primitive

constructs supported by the source lanauage. In pencral. this implies that the target language must be at a lower
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between the source and the intermediate linguage s drawn pon ting downward -
[ranslation via transliteration and iefinements perhaps mostapplicable b compilation becise any prinntive
construct can be expressed in machine language. In contast, source-tomsonree tansbators ety have o restna
the input linguage and/or admit possibly incorrect translations morder o make transhiteration practcal.
A second limitation on the apphicability of translation via transhitciation and retinement s that refinementis an
inherently difficult task which transliteration makes more ditticult,. As g result, the transhiteration and refinement
approach is most applicable in situations where the subsidiary goals of tinslation are not too stringent.

Transliteration and refinement works well in a straightforward compiler where readability of the output is not

- e« e w o XN | JEEwW ¥ W ¥ RS S

an issuc and only moderate cfficiency is required in the output code.  In order to achicve signiticantly higher

levels of efficiency in the output code, optimizing compilers expend an enormous amount of effort on refinement.

1 - Translation via Abstraction and Reimplementation

As shown in Fig. 5, translation via abstraction and reimplementation operates in two steps. ‘The abstraction
step performs a global analysis of the source program. the goal of this analysis is (0 obtain an understanding of
the algorithms being used by the program. The abstract description highlights the essential features of these

algorithms while deliberately throwing away information about unimportant features of the program.

ahstract description

ABSTRACTIOﬂ/7\ REIMPLEMENTATION

ource program target program

Fig. 5. ‘Uranslation via abstraction and rcimplementation.

The reimplementation step tikes the abstract description produced by the abstraction step and creates a
program in the target language which implements this description. In order o simplify this task, the abstract
description s designed so that it contains exactly the right kind of information nceded in order to guide the
reimplementation process.

‘I he basic difference between translation via transliteration and refinement and translation via abstraction and
reimplementation can be scen by comparing the shapes of Figs. 1 & 5. The transhteration and refincment
approach translates directly to the target language. In contrast, the abstraction and reimplementation approach
first translates the source program up to a very high level description and then translates this description down to
the target language.

Like translation via transliteration and refinement. translation via abstraction and reimplementation uses a
divide and conquer strategy to attack the translation task. However, it divides the translation task differently. I he
transhteration and refinement approach separates the problem of satisfying the primary goal of translation from e\
the probliem of satisfyvine the subsidiary poads of tansation. In controast, the ab raction and reimnlenentation
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_{::)',\ cxample of Abstraction and Reimplementation :;.
As an example of translation via abstraction and reimplementation. consider how this approach could be used g

to translate the Fortran program in Fig. 2 into Ada. ‘The first step is to obtain an abstract description of the :

computation in Fig. 2. Fig. 6 shows the key clements of such an abstract description. .:

Fig. 6 is divided into three parts. The first part lists the parameters of the program BOUND and their types as :

specified in the original Fortran program. (By convention, the Scientific Subroutine Package uses the dimension _

specification V(1) to specify a vector of unknown length rather than a vector of length onel) A complete data '_::

flow analysis of the program is used in order to determine which parameters are "in" and which are "out™. This

analysis reveals that UNDER, BETW, and OVER arc ncver read before they are written and are therefore "out™ i

parameters. ~

The sceond part of Fig. 6 lists a number of constraints which must be satisfied in order for the program BOUND

to producce rcasonable results. ‘The first scven constraints state that the ranges of the various vector parameters ::

must be large ecnough to prevent referencing memory locations outside of the vectors. These constraints are ,

determined by looking at the largest values which the various index variables in the program can reach. s

‘The last two constraints speeify that the parameters NO and NV must be positive and therefore that the vector

parameters must have positive extent. These are particularly interesting constraints becausce they imply that Ada 5

e "for" loops can be used when translating the program. The constraints follow from the observation that a f
" Fortran DO loop which enumerates the elements of an array does not operate correctly when given an array of zero "N
cxtent. The problem is that the body of a Fortran DO loop is always cxccuted at least once, even if the limits ‘.:‘

placed on the DO variable suggest that zero exccutions would be more appropriate.  (This feature of DO is

occasionally used in a constructive way by Fortran D0 loops which do not enumcrate the clements of arrays.) <

The third part of Fig. 6 describes the computation performed by the program. The first two lines specify that g

the program checks to sce that every clement of BLO is less than or equal to the corresponding element of BHI. If "

this is true then TER is st to zero. Otherwise, TER is sct to one and the program is terminated. .
The remainder of Fig. 6 describes the main computation performed by the program BOUND in terms of X :

recurrence equations. ‘The main body of the program is a doubly nested loop iterating over the index variables J

and 1. The various cvaluations of the body of the inner loop can be teferred to in terms of the corresponding
values of the index variables.  The notation Xon is used to refer to the value of the variable X at the end of the
evaluation of the inner loop body during which the outer loop index has the value m and the inner loop index has
the value n. ‘The recurrence equations specify how variable values corresponding to a given evaluation of the
inner loop body are computed from values corresponding to carlier evaluations. The recurrence cquations are
derived by inspecting the data flow in the loops. As part of this process. the middle loop in the Fortran code is
revealed to be part of the initialization for the main loop in the program.

The fact that Fig. 6 is shown in a textual form is not intended to imply that the abstract deseription would

actiadle he represented tentual's o cvanmle e mreht sihe the tor of descal expresaons annotatime adota
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PARAMETERS:
in A,S,BLO,BHI: vector of real
out UNDER,BETW,OVER: vector of real
in NO,NV: integer
out IER: integer

CONSTRAINTS:
A'RANGED1..NVsNO, S'RANGED1..NO,
BLO'RANGED1..NV, BHI'RANGED1. .NV,
UNDER 'RANGED1..NV, BETW'RANGED1..NV, OVER'RANGED1..NV
NO>1, NV>1

COMPUTATION:
if (v I€1..Nv BLO(I)<BHI(I)) then IER=0
eise IER=1 A computation is aborted
The main computation is a doubly nested loop
The outer index (first subscript) counts from 1 to NO
The inner index (second subscript) counts from 1 to NV
The variables assigned within the loops have the following values:
v jE1..NO, i€1..NV, K€1..NV
IJj‘0=_]'N0
IJj,i=I‘]j,i"1+~0
UNDER(K)q j=0.0
if k=i A S(j)20.0 A A(1J;;)<BLO(i)
then UNDER(K);;=1. 0+UNDER(K) -1
else UNDER(K)“-UNDER(K)J 1,i
BETW(K)q {=0.0
if K=i A S(j)#0.0 A BLO(i) <A(1J;;) <BHI(i)
then BETW(K)ji=1.0+BETW(K)j.q j
else BETW(K);=BETW(K)j.y i
OVER(K)g ;=0.0
if K=i A 8(j)#0.0 A BHI(i)<A(LJj;)
then OVFR(K)J i=1. 0+0VER(K) -1,
else OV!-:R(K)“=0VER(K)_l 1,i

Fig. 6. An abstract description of Fig. 2.

Based on the abstract description in Fig. 6, it is a straightforward matter to create a quality translation of the
program BOUND into Ada as shown in Fig. 7. The paramcters are made parameters in the code with the speeified
types. The recurrence cquations map directly into a triply nested loop. Transformations similar to those uscd by
an optimizing compiler can be used to get rid of the unnecessary innermost loop over K and to move the test
${J)7=0.0 out to the outermost loop since it is an invariant in the inner loop.

A comparison of Fig. 7 with Fig. 4 shows that the translation in Fig. 7 is superior in several respects. Most
notably, the paramcters have all been given the correct modes; labels and "goto” statements have been
climinated in favor of complex "if then e1se” statements; and “for " loops have been used.

Some of the improvements which arc seen in Fig. 7 could have been achieved in Fig. 4 if local refinement had

heen applicd more aggressively.  For example, local trinsformations probably could have been used to combine

the simple ™ f then else™ sttcments in Fig 4 with the staements followine them in order o areate the
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K
!
¢ (s " " . A
3 f‘\'p if then else” stutements shown in Fig. 7.
However, improvements such as determining the proper modes for the parameters and utilizing "for™ loops
depend critically on an understanding of the program as a whole. “These changes cannot be made until after a

) global analysis of the program has determined that the changes are valid,

type VECTOR is array (INTEGER range <>) of REAL;

procedure BOUND(A,S,BLO,BHI: VECTOR:
UNDER,BETW,OVER: out VECTOR;
NO,NV: INTEGER; IER: out INTEGER) is
1,13,3,K: INTEGER;

begin

IER := 0;
for T in 1..NV loop

if BLO(I)>BHI(I) then IER := 1; return; end if;
end loop;

\ for K in 1..NV loop

\ UNDER(K) := 0.0;

BETW(K) 0.0;
OVER(K) := 0.0;
end loop;
for J in 1..NO loop
if $(J)/=0.0 then
IJ := J-NO;
for I in 1..NV lo0p

ts IJ := IJ+NO:

“; if A(1J)<BLO(I) then UNDER(I) := UNDER(I)+1.0;
elsif BHI(I)<A(IJ) then OVER(I) := OVER(I)+1.0;
else BETW(I) := BETW(I)+1.0;
end if;

end loop;
gnd if;
end loop;
end BOUND;

B i ui ot e o an o

Ho»n

Fig. 7. A translation of Fig 2 into Ada based on Fig. 6.

While Fig.7 is a good translation of Fig.2 into Ada, it is still far from optimal. Appropriate Ada-style
constructs have been used, however, the result is still essentially a Fortran-style program. In particular, the fact
that A is really a matrix, but is declarcd to be a vector and the fact that the various vector parameters may have
ranges which are larger than the ranges indicated by the parameters NO and NV is in the style of the Fortran
Scientific Subroutine Package. but, it is not in the stylc of Ada.

Fig. 7 is shown as it is because it is just about the best translation which can be achicved if the parameters and

their types are required to remain the same as in the Fortran program. In addition, it illustrates the kind of

translation which can be achicved by using an abstract representation which is only moderately abstract.

Example of Increased Absiraction

Figs. 8 & 9 show a translation of the program BOUND into Ada which is better than the one shown in Fig, 7 and

v
" lx.l
LS ‘,'\ ’

the abstract description on which itis based. ‘Fhere are twvo fundamental ways in which the translation shown in

e ieanres s diderent fiom the one siown e bess 0.8 20 st bigs, 8 & 0 assuiie that the program BOUND and
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the programs which call it arc being translated together. This opens up two new avenucs of attack on the
transtation problem. ‘The programs which call BOUND can be inspected in order to obtain additional information
about BOUND. 'The interface to the program BOUND can be altered in order to render the program morc
acsthetically in Ada.

In Fig. 8 it is assumed that an analysis of the programs which call BOUND shows that BOUND is only called with
vectors which have the exact sizes indicated by the parameters NO and NV. This makes it possible to tighten up the
constraints in the description and to climinate all mention of the variables NO and RV in favor of using the Ada
array attribute "' RANGE" applicd to the paramcters.

The second fundamental difference between Figs. 8 & 9 and Figs. 6 & 7 is that Fig. 8 is significantly more
abstract than Fig. 6. 'The computations being performed are described in terms of their net cffects.  The
computations involving UNDER, BETW, and OVER arc described as computing a count of elements of A which have
certain properties. ‘The variable S is described as a vector of flags which are tested. A is described directly as a
matrix, and no mention is made of the variable 1J. ‘T'he computation involving I€R is summarized by stating that
the computation is aborted and an crror signalled if the first constraint is violated. No mention is made of how
this might be done,

LOGICAL INPUTS: SN

A matrix of real L I
S vector of flag
BLO,BHI vector of real

LOGICAL OUTPUTS:

UNDER,BETW,OVER vector of count
error signaled (and computation aborted) if constraint (1) is violated

CONSTRAINTS:
(1) v I€BLO'RANGE BLO(I)<BHI(I)
(2) A'RANGE(1)=BLO'RANGE=BHI'RANGE=UNDER'RANGE=BETW'RANGE=0VER'RANGE
(3) A'RANGE(2)=S'RANGE
COMPUTATION:
v I€UNDER'RANGE
UNDER(I) = count-of {JES'RANGE | S(J) A A(I,J)<BLO(I))}
v I€BETW'RANGE
BETW(I) = count-of {JES'RANGE | S(J)} A BLO(I)<A(I,J)<BHI(I)}
v I€EOVER'RANGE
OVER(I) = count-of {JES'RANGE | S(J) A BHI(I)<A(I,J)}

Fig. 8. A morc abstract description of Fig. 2.

The key to the increase in abstraction in Fig. 8 is the ability o recognize the net effects of a computation. This
in turn depends on the abstraction component having a significant amount of knowledge about what kinds of
computations can be performed. For example, it can presinmably recognize that the recurrence cquations in Fig, 6

compute counts and that the computation involving the variable 1J converts matrix indices to vector indices.

«

Sumilarty, it can recognize that the computation involving the variable TER reflects the standard way that error ~w

candittons are signalled in the Fortran Scientific Subroutine ibrary,

Bl on g 80 the renmplementanon step can produce o much beter program {(see Fig 9 than the one
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shown in Fig. 7 because it has fewer restrictions placed on it. It can choose better parameters and better types
because the abstract description docs not require that the parameters and types be the same as in the Fortran
program. Iis free to implement the error signalling using standard Ada methods -— i.c., by raising an ¢xception
instead of returning an crror value which has to be explicitly checked by the caller. Due to the stronger
constraints on the length of the vectors, array literals can be used to initialize the vectors UNDER, BETW, and OVER
instcad of a loop.

In some situations, the added freedom docs not cause any change in the translation.  For cxample, the
reimplementation step could have computed the counts in several different ways. However, none of these
mcthods would have been any better than the one shown in Fig. 7, so the same method was used in Fig. 9.

There is a price which has to be payed in order to get the improved translation shown in Fig. 9. Analysis is
made more complicated by the nced to recognize the net cffects of the computation being performed. In
addition, reimplementation is made more complicated because there are more implementation decisions which

have to be made.

type VECTOR is array (INTEGER range <>) of REAL;

type BOOLS is array (INTEGER range <>) of BOOLEAN;

type VECT is array (INTEGER range <>) of INTEGER;

type MATRIX is array (INTEGER range <>, INTEGER range <>) of REAL;:

procedure BOUND(A: MATRIX; S: BOOLS; BLO,BHI: VECTOR;
UNDER,BETW,OVER: out VECT) 1s
1,J: INTEGER;
begin
for I in BLO'RANGE loop
if BLG(1)>BHI(I) then raise CONSTRAINT_ERROR; end if;
end loop;
UNDER := (UNDER'RANGE => 0);
BETW := {BETW'RANGE => 0);
OVER := (OVER'RANGE => 0);
for J in A'RANGE(2) loop
if S(J) then
for I in A'RANGE(1) Toop
if A(1,J)<BLO(I) then UNDER(I) := UNDER(I)+1;
elsif BHI(I)<A(I,J) then OVER(I) := OVER(I)+1;
else BETW(I) := BETW(I)+t;
end if;
end loop;
end if;
end loop:
end BOUND;

Fig. 9. A translation of I-ig 2 into Ada bascd on Fig. 8.

Figs. 6-9 are not produccd by any particular translator. Rather, they are hypothetical cyxamples intended to
iltustrate the process of abstraction and rcimplementation.  In particutar. they demonstrate that increased
abstraction lcads to improved translation.  In the limit, it is possible to create a translation which comparcs

favorably with the program the programmers would have written had they heen writing in the target language.
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Advantages of Abstraction and Reimplementation

The most important advantage of translation via abstraction and reimplementation is that, while translation via
vanstiteration and refinement is. in essence., designed to facilitate achieving the primary goal of vanslation (e,
correctness), translation via abstraction and reimplementation is specifically designed to facilitate achicving the
subsidiary goals of translation,  As discussed in Scction 11, transliteration ¢rcates many problems for later
refinement.  In contrast, the sole purpose of abstraction is to simplify later reimplementation. Sections [V & V
give extended examples of the way in which abstraction and reimplementation can cooperate in order o produce
high quality translation.

A sccond important advantage of translation via abstraction and reimpleincntation is that it is not lunited by
the practicality of translitcration.  As discussed in Scction [, the local nature of transliteration can causc it to be
blocked even though overall translation is possible. In contrast, there is no o priori reason for abstraction to ever
be blocked since the result of abstraction is not constrained by the target language. Further, reimplementation
nced not be blocked as long as overall translation is possible.

A final virtue of translation via abstraction and reimplementation is that it leads itself to the construction of
famities of translators which share components at least as well as translation via transliteration and retinement if
not better. In this regard, note that designing an abstract representation which is compatible with a diverse set of

larget languages is casier then designing a target-like intermediate language which is compatible with them.

Disadvantages of Abstraction and Reimplementation

Like translation via transliteration and refinement, translation via abstraction and reimplementation has a
fundamental problem of incompleteness.  Unlike transliteration, abstraction and rcimplementation are always
possibic as long as translation is possible. However, it would not be reasonable to assume that these processes will

always be practical. When they arc not. a translator will have to fall back on some other method of translation.

For cxample, it might use transliteration (or ask for huinan assistance) in order to translate thosc parts of a

program which could not be uscfully abstracted and/or reimplemented.

A key issuc then is what percentage of a typical source program can be practically abstracted and
reimplemented.  This question can only be answered in the context of a particular application. However. two
general statements can be made.  First, any particular deficiency in abstraction or reimplementation can be
rectiticd by adding more knowledge into the abstraction and reimpicmentation modules.  Sccond. the limits of
abstraction and reimplementation are essentially orthogonal to the limits of transhiteration. I herefore, ¢ tanslator
which uses abstraction and reimplementation and which falls back on transhteration should always be more
complete than one which uscs transliteration alonc.

Another disadvantage of the abstraction and reimplementation approach is that it is more complicated than
transhiteration and retinement. Albin all, in situations where vansliteriation s practical and little refincment s
necevony s translanon v taeshiteration and celnement s prebabie thie aeosoach of choree. Howe o
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Al transkition via abstraction and reimplementation can succeed in producing high quality output where translation X
| Var ‘
‘ via transtiteration and refinement would fail, wl
| 9
I ;i
. . . 1
IV - Satch — Translating from Cobol to Hibol )
Ll
&
Faust's Satch systemn [10] uses abstraction and reimplementation in order to attack a problem which is }:J
particularly difficult for translation by transliteration and refinement — translation from a low level programming .
language to a high level programming language. There arc two key problems with this kind of translation. First, N
. . . . “~ . . . - Iy . . >
transliteration is usually not practical. Sccond. the subsidiary goal of such a translation is readability which is an d
excepiionally difficult goal to satisfy well. ‘j
In the case of Satch, the source language is Cobol [36] and the target language is Hibol [20]. The motivation .

behind the translation performed by Sateh is the desire to convert pre-existing Cobol programs into a form where

they can be more casily maintained. The benefits of the translation arce illustrated by the fact that the resulting

Hibol program can be as much as an order of magnitude shorter than the original Cobol program.

Hibol is a special purpose business data processing kanguage. 1t is a very high level, non-procedural, single

assignment language which is based on the concept of a flow. A flow is a multidimensional aggregate of data

values which are indexed by one or more keys. Each Hibol statement specifics how a flow is computed from other

. fows. This is donc by specifying how a typical element of the output tlow is computed from typical elements of

i" the input flows. An important advantage of Hibol is thar both file 170 and iteration over the elements of flows is

implicit in a Hibol program and therefore does not have to be explicitly specificd by the programmer. Fig. 11
(which will be discussed below) shows an example of a Hibol program.

A key aspect of the non-proceduiral nature of Hibol is that there is no explicit control flow in a Hibol program.
‘The statements in a Hibol program are unordered and there are no flow of control constructs such as conditionals
or loops. As a result of this, direct transliteration from a programming language such as Cobot which has flow of

control constructs to Hibol is not practical.

Fxample of Sarch’s Trunslation

Figs. 10 & 11 (adapted from [10]) show an example of a translation performed by Satch. Fig. 10 shows a Cobol
program named PAYROLL. This program reads in a file of records which specify the wage rate for cach member of
a group of employees, The program computes the gross pay for cach employce based on a 40 hour week along

with a count of the employces and the total gross pay for all the employcees.
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ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI,
SELECT GROSS-PAY-0UT ASSIGN TO DA-2301-S-GPO.
SELECT EMPLOYEE-COUNT-OQUT ASSIGN TO DA-2301-S-ECO.
SELECT TOTAL-GROSS-PAY-QUT ASSIGN TO DA-2301-S-TGPO.
DATA DIVISION.
FILE SECTION.
FD hourly-wage-in
LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.
01 hourly-wage-rec.
02 employee-number PICTURE IS 9(9).
02 hourly-wage PICTURE IS 999Vv99.
FD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.
01 gross-pay-rec. )
02 employee-number PICTURE IS 9(9). .
02 gross-pay PICTURE IS 999Vv99. .
fD employee-count-out "
LABEL RECORD IS OMITTED N
DATA RECORD IS employee-count-rec.
01 employee-count-res.
02 employee-count PICTURE IS 9(6).
FD total-gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.
01 total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)va9.
PROCEDURE DIVISION.
initialization SECTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERQ TO employee-count,
OPEN INPUT hourly-wage-in.
OPEN QUTPUT gross-pay-out.
mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-job.
MOVE employee-number OF hourly-wage-rec
TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
GO TO mainline.
end-of-job SECTION.
CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE employee-count-rec.
CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec. -~
CLOSE total-gross-pay-out. NS .
STOP RUN. A .

R

[ .l{‘{fl

Sy oy .
WP

e

)
.y

‘on
¢ =

'.’;.']’f’y

Iy
)
s e !

. . .
NS te e

]

e vy
L

s oK a0
L)
e |\

v‘-f,.‘

g 1 Phe Cobol program PAYROLL. 4




Ladl Sak 2.4 ‘A AR S N LDt 20D o0 aUs 40" 0 g

19

Fig. 11 shows the Hibol wanslation which is prodoced bv Satch.  Like any Hibol program. this program is
divided into two parts which are closely analogous to the parts of a Cobol program. “The data division of the Hibol
program specifies the data types of the flows (introduced by the keyword FILE) used in the program and how
these flows arc indexed. The computation division specifics how the output flows are computed from the input
flows. ‘The first linc of the computation division spccifics that the clements of the flow GROSS-PAY arc computed
by multiplying the clements of the flow HOURLY-WAGE by 40. ‘The sccond line of the computation division
specifies how to compute the single clement flow TOTAL-GROSS-PAY. The operator SUM collapses a dimension of
a flow by adding all of the clements in that dimension together. In an analogous way, the third line of the

computation division specifies how to count the number of employecs.

DATA DIVISION

KEY SECTION
KEY EMPLOYEE-NUMBER FIELD TYPE IS NUMBER FIELD LENGTH IS 9

INPUT SECTION
FILE HOURLY-WAGE KEY IS EMPLOYEE-NUMBER

OUTPUT SECTION
FILE GROSS-PAY KEY IS EMPLOYEE-NUMBER
FILE EMPLOYEE-COUNT
FILE TOTAL-GROSS-PAY
COMPUTATION DIVISION
GROSS-PAY IS (HOURLY-WAGE s+ 40.)
TOTAL-GROSS-PAY IS (SUM OF (HOURLY-WAGE  40.))
EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

Fig. 11. Satch’s translation of Fig. 10 into Hibol.

Without discussing Figs. 10 & 11 in any more detail, it can be seen that Satch is capable of creating quite good
Hibol translations of Cobol programs. (More complex examples arc given in [10].) However, the translations
produced by Satch are still not optimal. For example, it would be better if Satch were capable of realizing that the

flow TCTAL-GROSS~PAY in Iig. 11 could be computed using the morc compact expression ( SUM OF GROSS-PAY ).

Implemeniation of Satch

Like the architecture of any translation system based on abstraction and reimplementation, Satch's architecture
is divided into two basic parts (sec Fig. 12). The five modules on the left side of the figure operate together to
create an abstract description of the Cobol program supplied to Sawch. The Hibol reimplementation module
creates a Hibol program based on the abstract description. Most of the burden of the translation is carried by the

abstraction modules. This asymmetry is due to the fact that the very high level nature of Hibol allows the abstract

description 1o be similar to the wrget language.
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ALGORITHM HIBOL
IDENTIFICATION KEIMPLEMENTATION
grouped plan Hibol program
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DETERMINATION

surface plan
PLAN CREATION

do-Li r r

S
PARSING/

Cobol program
Fig. 12. "T'he architecture of Satch.

The parsing module (implemented by G. Burke) parses the Cobol program and transliterates it into
pscudo-Lisp. (Lisp [24] was chosen as the output of this module in order to facilitate the use of a pre-existing plan
creation module.) The parsing module is implemented in essentially the same way that the transliteration
component of a Cobot to Lisp translator operating via transliteration and refinement would be implemented.

For cach file in the Cobol program, the key determination module determinces which of the fields of the file act
as keys.  Various heuristics could be used to determine this information by looking at the Cobol program.
However, Satch currently asks the user to specify which fields are key ficlds. In ordinary usc this would not lead
to an excessive amount of user interaction because key determination only has o be done once for cach file even
if a large number of programs which operate on the files are being translated.

The plan creation module converts the pscudo-l.isp output of the parsing module into a programming
language independent internal representation called a surface plan. Fig. 13 (adapted from [10]) shows a simplified
version of the surface plan which Satch creates when operating on the Cobol program PAYROLL shown in Fig. 10.

A plan is similar to a data flow diagram. Computations are represented by boxes (called segiments). ‘The
scgments are connected by solid arrows indicating data flow and dashed arrows indicating control flow. 1n the
figurc. many of the data flow arrows have annotations indicating the variables they correspond ro. The names of
the segments represent the opcrations they pertorm. PLUS adds two numbers. CREAD reads a record from a file.
EOFP determines whether the end of a file has been reached. PIF splits control flow based on whether or not its
input is TRUE,

In the interest of brevity, the plan in Fig. 13 has been simplified in several ways.  The computation of
EMPLOYEE-rOUNT has been omitted. The file open and close functions have been removed. Except for the file
HOURLY-WAGE, the data flow corresponding to the varions file objects has been omitted. Vhe data fow for the Tile

HOURE 7 -WAGE was retained i order tomeke the 1O e G cundestandable,
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'J-"’::‘ Plan creation is performed using global data flow and control flow analysis which is similar 1o the kind of

analysis which is performed by an optimizing compiler.

r
S| e PAYROLL
[
|T
C hige T T 3
X ' CWRITE 1
: awr pob /N
N / N Al :
CASEL CASI2 '
PLUS
JOIN
. 0
: TGP u' GP
X TIMES
]
X HWF :
‘ )
Qe \ :
EOFP <40>
T A
<« ' HW [EN  [HWF
CREAD
PIF
YES NO /N
' HWF
’ L] L
! I (U G )
)
R R EEEE TR TR PPEEE SEEEEE . TGP
\Z
CWRITE2
HWF T
N
HWF => HOURLY-WAGE FILE-OBJECT TGP => TOTAL-GROSS-PAY
HW => HOURLY-WAGE GP => GROSS-PAY

EN => EMPLOYEE-NUMBER

Fig. 13. A simplificd surface plan for PAYROLL.
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into o hicrarchy of segments withip scgments in otder o highiight the Jogice! structure of the plan, Second, the v
leops e the plan are identiticd and broken down ihto their cotnponcent parts, .
- . . - l.‘
Fio. 14 shows a simpliticd grouped plan for the progran PAYROLL. Lake Fiz. 13 the grouped plan omits the -~
~ . N . . - . - . . d‘
file open and close functions and some oi the other fite operations. The figure is also simplified in that it does not ¢
Py
show the computation which occurs within the various segments. Unlike Fig. 13 the grouped plan shows the o
computation of EMPLOYEE-COUNT,
fhe key ditference between Figs, 13 & 14 15 the way the loop in the progiam PAYROLL is represented.  In .
| Fig. 14, the various parts of the loop are broken apart into scgments which arce connect by data flow rather than Q::
i control Now. Thisis done through a process called temporal abstraction [27]. o
Femporal abstraction treats series of values m the loop (e.g.. the successive values of HOURLY-WAGE) as it they e
were single data objects. ‘Phese remporal sertes are represented by bold data flow arrows in Fig. 14, ‘T'emporal
abstraction analyzes a loop as a sct of generators and consumers which are sources and sinks for wemporal series,
ot example, in Fig. 14, the generator CREAD creates o lemporal scries of HOURLY-WAGE values which are
consumed by the segment TIMES(40). This segment in turn creates o temporal series of GROSS-PAY vabues which ":\
are sunumed up by the scgment PLUS(SUM). f.::
"’\
HWF TEMPORAL CUMPOSITION GPF -*;; B
| CONSUMER R
l CWRITE -
r T
. GENERATOR [EN CONSUMER ’
' L] P -
‘ + CREAD TIMES(40) e
HW ) o
I _.'-
1 HWF —_— o
{ CONSUMER
HWF ) =P PLUS
TERMINATION CONSUMER (SUM) ! -
EOFP IDuMM) PLUS , Yy
(COUNT) T
!
TGP
| .
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tig. 14, A simplified grouped plan for PAYROLL. L)
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understood i isolation,

Satch was implemented in the context of the Programmer’s Apprentice project and it shaves niuany ideas with
the rest of the project. T particular, the plan representation, the plan creation module, and the groupmg module
are borrowed directly from KBEmacs [28] which is the current demonstration system developed as part of the
Programmer’s Apprentice project.

Ihe algorithm identitication module inspects the grouped plan and determines the net cffect of the
computation being performed. In combination with the results of key determination, the results of algorithm
identification form an abstract description of the program. Fig. 15 (adapted from [10]) shows the abstract
description which is created for the program PAYROLL. ‘The first part of Fig. 15 comes directly from the data
division of the Cobol program annotated by the key determination module. The second part of g, 15 comes
from algonthm identification.

Algorithm identification operates in two stages. ‘Fhe first stage identifies what kinds ot Tooping computations
are present in the program.  This is done by special purpose procedures which scan the grouped plan and
recognize standard kinds of computation.  In Fig. 14, these recognition procedures identify that the scgments
CREAD and EOF P cnumcrate the records in a file while the segment CWRIT . - ~umulates a scrics of records into a
file. They also identify that the segment PLUS{SUM) computes a sum while the regment PLUS(COUNT ) computes
a count. (I'he names of these segments in Fig. 14 reflect the fact that this recognition has been performed.) The
recogmon stage of the algorithm identification module makes it possibie to use the terms "enumerate™, "sum”,
and "count” in the abstract description o describe the computation in the loop instead of recurrence equdtions.

fhe second stage of algorithm identification computes summary descriptions of the computation performed by
the program. ‘This s done by means of a symbolic evaluator which traverses the plan and accumulates algebraic
cquations which describe the computation.  For cxample, the symbolic evaluator detenmines that the ficld
GROSS-PAY has the value "CREAD-VALUE (HOURLY-WAGE-IN, HOURLY-WAGE)40." — i.c, forty times the value
of the HOURLY-WAGE field rcad from the file HOURLY-WAGE-IN. Similarly. it dctermines that the ficld

TOTAL -GROSS-PAY accumulates the sum of the GROSS-PAY values. An algebraic simplifier is used in order to

render the equations in as compact a form as possible.
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FLILES:
HOURLY-WAGE-IN
key-field EMPLOYEE-NUMBER-IN 9(9)
data-field HOURLY-WAGE 999v99
GROSS-PAY-0UT
key-field EMPLOYEE-NUMBER-QUT 9(9)
data-field GROSS-PAY 999V98
EMPLOYEE-COUNT-0UT
data-field EMPLOYEE-COUNT 9(6)
TOTAL-GROSS-PAY-0OUT
data-field TOTAL-GROSS-PAY 9(7)va9

COMPUTATION:

The main loop in the program enumerates the records in the file
HOURLY-WAGE-IN. It terminates when EOFP(HOURLY-WAGE-IN).

fields written on each cycle of the main loop:
EMPLOYEE-NUMBER-QUT = CREAD-VALUE(HOURLY-WAGE-IN, EMPLOYEE-NUMBER-IN)
GROSS-PAY = CREAD-VALUE(HOURLY-WAGE-IN, HOURLY-WAGE)=»40.

fields written after the main loop:
EMPLOYEE-COUNT = count(NOT(EQFP(HOURLY-WAGE-IN)})
TOTAL-GROSS-PAY = sum(CREAD-VALUE(HOURLY-WAGE-IN, HOURLY-WAGE)+40.)

Fig. 15. An abstract description of PAYROLL.

The reimplementation module of Satch produces a Hibol program based on the abstract description of the
Cobol program. This is donc by converting these cquations into Hibol syntax. The only real complexity in this is
checking that the program is expressible in Hibol. In particutar, the reimplementation module has to check that
cach input file is processed in fuil and that the input keys map to the output keys in a way which is compatible

with the implicit file rcading and writing performed by Hibol.

Linuts of Sarch

Although it illustrates the efficacy of translation bascd on abstraction and rcimplementation, there arc several
ways in which Satch is limited. First of all, Satch is only a demonstration system. It has only been tested on a few
examples and therefore has not been fully debugged. In addition, it is quite slow.

A more fundamental problem with Satch is that it is only applicable to a narrow class of Cobol programs. Part
of this is due to the fact that, since Hibol is a relatively special purpose language. many Cobol programs cannot be
rcasonahly translated into Hibol by any mcans. However, there arec many Cobol programs which could in
principle be translated into Hibol in a reasonable way which cannot be translated by Satch. The basic difficulty is
that Satch does not have a generalized recognition facility, Rather. special purpose procedures have to be written
m uider for Satch to be able to identify what kinds of looping computations arc present in i program.

Overcnining this difficulty is a primary goal of the knowledge-based translation system discussed in Scetion V1.
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V - Cobbler -— Translating from Pascal to Assembler Language

Dultey's proposed Cobbler system [9] uses wanslation via abstraction and reimplementation i order to
compile Pascal [13] programs mto PDP-11 assembler language [33]. Cobbler's goul is the creation of extremely
cfficient object code — code which is comparable in efficicncy to the code which could he produced by an cxpert
assembly Tanguage programmer. Ihis is a level of efficiency which is beyond any existing compiler and is
arguably beyond the abilitics of any translator based on transliteration and refinement,

At first glance, it may seem surprising that Cobbler and Satch usc the same approach to transtation. After all,
the problems associated with compiling Pascal do not scem to be very similar to the problems associated with
translating Cobol o Hibol. In particular. the goal of the former is efficicncy of low level output while the goal of
the latter is readability of high level output.

However, the two kinds of translation actually have a great deal in common. Stated generalty, the key problem
both systems face is that the quality criteria which govern the source are very different from the quality criteria
which govern the target. In order to have the freedom to do a good job of satisfying the target criteria, the source

must be analyzed and restated in an abstract way which frees it from the constraints of the source criteria,

Example of Cobbler's Compilation

Figs. 16 & 17 (adapted from [9]) show an cxample of how Cobbler is intended to operate.  Fig. 16 shows a
Pascal program which initializcs a 4x4 array A of bytes to the identity matrix. The program docs this a column at a
time by setting cach column clement to zero and then changing the diagonal element to one. Iig. 17 shows the

PDP-11 assembler code which would be produced by Cobbler.

var I: 1..4; J: 1..4;
A: array[1..4, 1..4) of 0..255:

begin
for J := 1 to 4 do
begin
for I := 1 to 4 do A[I,J] := 0;
A[J,3] := 1
end
end

Fig. 16. The Pascal program INITIALIZE.

MOV  #A,R3
MOV  #3,R0
L1: MOVB #1,(R3)+

CLRB (R3)+
CLRB (R3)+
CLRB (R3)+
CLRB (R3)+
DEC RO

BGT L1

MOVB #1,(R3)

Fig. 17, Cobbler's compitation of Fig. 16,
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The code in Fig. 17 is much more cfficient than a simple literal translation of Fig. 16 into PDP-T1 assembler.
The optimizations introduced can be divided into two catcgorics: algorithnr independent optimizations and
changes to the algorithin,

‘I'he algorithm independent optimizations arc improvements which any good optimizing compiler might make.
The inner loop is unrolled in order to climinate the overhead engendered by having a loop. 'The matrix A is
operated on as a onc dimensional vector in order to simplify address calculations. "The outer loop is controlled by
an auxiliary counter (R0) which counts down instead of up. ‘This allows the code to take advantage of the fact that,
on the PDP-11, comparison with zero is more cfficicnt than comparison with other numbers.  (After cach
arithmetic operation, condition codes are automatically sct which specify whether the result is greater than, equal
to. or less than zero.)

For the most part, the optimizations above are straightforward. ‘The first simply involves duplicating the inner
loop body, and the sccond is essentially a strength reduction. However, introducing an auxiliary loop counter is
somewhat more complex. I a loop counts from # up o m by 5. Then a new loop counter can be introduced
which counts from m-r/s down to zero by one. Computation of the old counter is retained so that it can be used
within the loop while the new counter is used to control the loop. (In Fig. 17 no trace of this computation remains
because the simplification of the addressing calculations has rendered it unnccessary.) The correctness of this
transformation is supported by the fact that Pascal prohibits the body of a "for” loop from modifying the
itcration variable or the bounds of the iteration.

In order to highlight the algorithmic changes introduced by Cobbler, Fig. 18 shows a decompilation of Fig. 17
which undoes the effects of the algorithm independent optimizations discussed above while lcaving the
algorithmic changes in place. It should be noted that the figure is merely intended as a presentational device.
There arc a number of reasons why Fig. 18 is not a valid Pascal program. (Most notably, the matrix A is declared

to have different bounds from those which are presumably associated with other uscs of the matrix.)

var I: 1..3; J: 2..5;
A: array[1..3, 1..6] of 0..255;
begin
for I := 1 to 3 do
begin
A(1,1] := 0;
for J := 2 to 5 do A[I.,J] := 0
end,
Al4,1] := 1
end

Fig. 18. A decompilation of Fig. 17 into pscudo-Pascal.

Comparison of Fig. 16 with Fig. 18 shows that the computation performed by the target code praduced by
Cobbler is startlingly different from the computation performed by the source code. In fact, it is probably not
appropitate to say that the two picees of code are using the same alzorithm.

Phiee aborithimice chanees hae been e duced. The taeer code avoids todundanthy setting the diceonal
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-.R." clements to zero betore setting them o one. The target operates on A in row major order rather than column e
major order. The target treats A logically as a rectangular 3IxS matrix plus one additional element instead of as a %
square 4x4 matrix. -.'.
o
Perhaps the most important difference is the switch to row major order. For whatever reason, the programmer :.{
chose to use column mujor order in Fig, 16, This choice clashes with the fact that Pascal stores arrays in row major -
order.  Switching to row major order changes the program so that it references the clements of A in memory e
storage order. This in turn makes it possible to use auto-increment mode PDP-11 instructions to support the -
address calculations required. ’
Undoubtedly the most surprising change is the switch to operating on A as a 3x5 matrix. ‘This makes it much
casicr to sct the appropriate clements of A to one since alt these elements are now in the same column., ks
As will be discussed in the next subscction, Cobbler is able to make the algorithmic changes outlined above
because it creates an abstract description of the program which is not constrained by the order of iteration in the
loops, or even by the fact that A is declared to be a 4x4 matrix. ‘These changes arc arguably beyond the scope of :
any current optimizing compiler because they require an understanding of what is being computed by the source
program as a whole.
If the programmer had written the program as shown in Fig. 18 then any good optimizing compiler could have :
" produced the code in Fig. 17. However, it is implausible that the programimer would have written the program in
e a form anything like Iig. 18. This is of course paitly duc to the fact that it is not technically possible to write the .
program shown in Vig, 18 in Pascal. However, much morc importantly, it is not desirable to write programs like :
Fig. 18. The programmer should not have to worry about dctailed efficiency in the source code. Rather,
readability should be the primary concern. The source program in Fig. 16 is preferable 1o the one in Fig. 18 .
because it is more readable and therefore casier to test, verify, and maintain. (One might arguc that Fig. 16 would ;
be even more readable if it operated in row major order. However, the fact that it operates on A as a 4x4 matrix L'
clearly makes the program casicr to understand than Fig, 18.) :'_.
o
Design of Cobbler ‘-
As shown in Fig. 19, the architecture of Cobbler is similar to the architecture of Satch (sce Fig. 12). In
particular, the first three stages of abstraction — parsing, plan creation, and grouping — are identical, and are
intended to make use of the same modules of KBEmacs. The difference between the lengths of the right hand
sides of Figs. 12 & 19 is intended to indicate that creating an efficient PDP-11 implementation of an abstract
description is much harder than creating a Hibol implementation. :;
T
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abstract description

ALGORITHM
ABSTRACTION

r e

GROUPING/
KNOWLEDGE -BASED

surface plan REIMPLEMENTATION

PLAN CREA'IION/

parse tree

PARSING/

Pascal program PDP-11 program

Fig. 19. The architecture of Cobbler.

The final stage of abstraction used by Cobbler (algorithm abstraction) goes beyond the algorithm identification
used by Satch. The goal of algorithm abstraction is to identify the various design decisions which were used when
writing the Pascal program and then undo them. This leads to a hierarchy of abstract descriptions for the program
which arc constrained by fewer and fewer design decisions.

When analyzing the program in Fig. 16. the algorithm abstraction module first withdraws the decision 1o use
loops when operating on A. This implicitly withdraws the decision to iterate in column major order as opposed to
row major order. 1t then withdraws the decision to set the diagonal clements to zero before sctting them to onc.
Finally it withdraws the decision to implement A as a Pascal array as opposed to a non-contiguous group of
variables. All of these steps could be performed by recognizing standard algorithms in a grouped plan for Fig. 16.

The left side of Fig. 20 summarizes the last step of algorithm abstraction. 'The 4x4 description represents the
nct effect of the program in Fig. 16 on the Pascal array A. The abstract description represents the net effect of the
program operating dircctly on the individual matrix clements. The significance of the abstract description is that

it gives Cobbler the freedom to consider ways of accessing A other than as a 4x4 array.

(abstract description)
1000010000100001=>ARjy ... A4
/ \
/ \
/ \
(4x4 description) (3x5 description)
1000 000
=> A 000 =>A
000

1
0
0

Fig. 20. Some descriptions of ig. 16 used by Cobbler.
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the abstract description. As one of the first parts of the reimplementation process, Cobbler looks for patterns in

4‘;’A..
Nt

the abstract description in order to decide how o use loops in the output program. ‘The recurring pattern
"10000" is discovered. ‘This causes Cobbler to reorganize its understanding of the progrin into the 3x5
description shown on the right hand side of Fig. 20.

Once the 3x5 description has been created, reimplementation procceds by investigating a varicty of

implementation options and then choosing a consistent and cfficient set of these options.  Following standard

Pascal practice, the array A is implemented as a row major order sequence of consccutive bytes in memory. (Fhis A

!

decision has to take the other uses of the matrix A into consideration.) Elements of A arc addressed by stepping a

pointer through memory. Since the inner loop which zeros the non-diagonal clements of A is very small and only

AR

iterates four times it is unrolled into a sequence of four separate instructions. Clear-byte instructions are uscd to
zero elements of A,

The key difficulty in making the above design decisions {(and the other decisions which are required) is
controlling the scarch process which investigates the various options, Flexibly and efficiently controlling scarch
was the major focus of Duffey’s rescarch. He proposed the following approach to the problem.

A data base is used to represent Cobbler's evolving understanding of the implementation. Design decisions
arc represented in terms of transformations, Each transformation consists of a pattern and a procedural body.

- ‘I'ransformations are triggered (causing their bodies to be executed) when their patterns match portions of the data
" base. The effect of a transformation is to modify the information in the data base, or add new infonnation to the
data basc.

‘The key component of the knowledge-based reimplementation module is a conflict resolution monitor which

controls the triggering of transformations. It excrcises control principally by deactivating and activating groups of

transformations. Associated with cach group of transformations is a function which can create cstimates of the
costs in time and space associated with the design decision suggested by the group of transformations. (For a
discussion of one way in which such estimates can be computed sce [14]) The conflict resolution monitor decides

which groups of transformations to activate by comparing efficicncy estimates.

An important feature of Cobbler is that it does not assume that it will always be able to make an informed
choice between the design decisions it is faced with. In order to deal with this problem, Cobbler keeps a record of
the design decisions which were used in the source program. In situations where Cobbler is not able to make an
informed choice, it uses the relevant source program decision.  For example, if no pattern had been tound in the
abstract description, Cobbler would have used the 4x4 structure suggested by the source program.

It would also be possible for Cobbler 0 take advice on how to compile a program because Cobbler’s
processing is based on design decisions which arc comprchensible to a programmer.

‘The discussion above shows how Cobbler is intended to operate. However, Cobbler is not a running system.,

DO With the exception of parts of the reimplementation component. no attempt has been made to implement

Cobbler.
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VI - The Knowledge-Based Translator
Work is currently underway i the Programmer’s Apprentice project on the components ot a ceneral piipose,
kuowledge-based transtator operating, via abstraction and reumplementation. An importint virtue of this system s
that much of its knowledge of translation will be represented as data rather than procedures. As a result. it will be

pussible to readily extend the system to cover a wide range of source and target languages.

i order to understand how the knowledge-based translator will operate, it is first necessary 1o discuss two of

the key ideas which underly the Programmer’s Apprentice (see 128]). The first idea is the concept of o cliche.
Programs are not constructed out of arbitrary combinations of primitive programming constructs.  Rather,
programs are butlt up by combining standard computational fragments and data structure fragments.  Lhese
standard fragments are refeired to as cliches and form the heart of the Programmer’s Apprentice’s understanding

of programming, just as they form the heart of any person’s understanding of programming.

As an example of cliches, consider the Cobol progrim PAYROLL in Fig. 10, This program contins a number of

cliches which can be named and deseribed as follows. The data cliche keved-scquentwd-C obol-file spectiices how 4
series of records with keys can be combined into a file. The computational cliche enumerate-keyed-sequential-
Cobol-file enumerates all of the records in a file taking care of opening and closing the file. The computational
cliche uccumulaie-keyed-sequential-Cobol-file writes out a series of records into a file taking care of opening and
clostng the file. The computational cliche Cobol-sum compuies the sum cf a sequence of numbers,

A crucial feature of cliches is that they can be arranged i a mulu-level specialization hierarciiy as shown in
Fie. 21, The descendants of a cliche in this hicrarchy are more specialized cliches which specify how the chehe
<Locld be adapied in various specific situations. For example, there is an abstract cliche entonerare which has i set
ot dewendants which specify how to enumerate various kinds ot data structures {e.g.. enwumerate-file and
cionerate-veetor), Similarly, the middle level cliche enumerate-file has a sct of descendants which specify how 1o
crnunerate different types of files (e.g., enumerate-indexed-file and enumerate-keyed-sequential-file). Going one
st further, each of these specific file enumeration cliches has a set of descendants which specify exactly what
minctons are used to open. close, and read files in various different programming language environnents (e

enumerate-indexed- Ada-file and enumerate-keyed-sequential-C obol-file).

enumerate
7
/ I
/ !
enumerate-file enumerate-vector
/ l
/ |
/ |
«nymerate-indexed-file enumerate-keyed-sequential-file
l |
| |
l |
samarate-indoxed Ada-file enum>rrate keyod soquential Cobal-fale
Pre 210 Dvamples ol speoabizanon el aonstinps bogs eon chiches,
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"VA A second key idea which underlies the Programmer’s Apprentice is the plai representation which was ,:
discussed briefly in Sccuon IV, The most important feature of a plan is that i€ is an abstract representation of a fl"
program which captures the key features of the computation while ignonng the syntactic details of particular :':
programming Languages. For example, data flow is represented by simple arcs in the plan for a program no matter -5
how itis implemented in the program (e.g.. via variables or parameter passing or nesting of expressions). ::
Both Satch and Cobbler imake use of the version of the plan representation which is used by KBlmacs. Since "o
the design of those systems, Rich [17].118] has developed an extended plan representation called the plan caleulus
which is capable of representing inuch more information about a program. In particular, the plan calculus is
capable of representing data cliches and the specialization relationships between cliches.  In contrast, the plan
representation used by KBEmuaces is only capable of representing computational cliches and only in isolation from
cach other.
Design of the Knowledye- Based Translator ;;::
Fig. 22 shows the way in which plans and cliches can be used as the basis for a knowledge-based translator ]
operating via abstraction and reimplementation. The modules on the left side of the diagram support abstraction, ':'.'.
‘The modules on the right side of the diagram support reimplementation. ‘The key component of the system is a ,
- library of cliches like the ones described above.  Specialization relationships are used as the basis for the
‘ organtzation of the library. '
ﬁ CLICHE LIBRARY L
=
'.-
CLICHE CLICHE N
ABSTRACTION SPECIALIZATION e
RECOGNIIION/ o
plan -
PLAN cmnou/ CODING -
parse tree A
PARSING N
source program rget program ‘
Fig. 22 Translaton based on cliches and plans. ::
. Ihe first two steps of abstraction (parsing and plan creation) e exactly the same as in Satch and Cobbler. The ;
‘_~;’ Last twar steps of abstraction (recogrmtion and cliche abstraction) are similar to Cobbler’s algonthm abstraction
Fobate A ey teatre e hcee mesSles s Ot they are data diven — operaine Posed crothe ol caored i the
Chohn ey
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[he recognition module scans the grouped plan and determimes what souice Linenage chidhios waere ased o
constiact the soarce program. CHhis recognition s pertorined directly on the suitace plan and theretore sulvaames
the crouping performed by Saich and Cobbler.) When applied o the Cobol program i 1. 10, recogmtion
would reveal that the progrim was composed of cliches such us keyed-sequential-Cobol-tile. cnumurate-
woved sequential-Cobol-file, accumulate-keyed-sequential-Cobol-file, Cobol-count, and Cobol-sum,

“e dhiche abstraction module creates an abstract plan by replacing specialized plans with the more abstract
P thes are speaalizations of. In the examiple above, this would yield a plan mvolving the abstract cliches
o desequence, enumerate. accumulate, count, and sum.

Cheeabstract plan attempts not to force any design decisions, Ttsiimply states that there are certain sequences of
vl contaming certain data values and keys and that various operations are performed on these values, The

ount feature of the abstract plan is that 1t i completely neutral between the Cobol program wihach

Sehemnents the sequences as tiles and a Hibol program which unplements then as flows or, for that mater, o L sp
v onwhich implements them as lists.
she rennplementation process i fig. 22 operates m the reserse of the way in which abstraction aperates.

C 1 he spediadizanion selects cliches which specialize the chiches in the abstract plan in a way which is appropriate

e e tget language. Cliche specialization (which can be looked at as ibrary driven synthesis) is the inverse of

cocabstraction. However, it is more difficult than chiche abstraction because 1t 1s harder to muake design

. vions than to discard them.
¢ ding creates program text corresponding to the specialized cliches which are sciected by cliche
~odwation, Coding s the mverse of parsing, plan cication. and recognition. Invertng recoznition and parsing
1 However, imverting plan creation s difticuit, because information corresponding to the mformation

threwn away by plan creation must be generated. For example, the coding module has to decide how to render

G Bow aesthetically in the target language using vaniables and nesting of expressions.

fr: " menting the Knowledge- Based Translator

“oeeress has been made woward implementing most of the components in Fig. 22 However, none of these

“onents has vet been completed. Rich and Feldiman are currently in the process of inpiementng the plan

Jus together with a general purpose automatic deduction system [19] to support reasoning in it Faiensise
v o already been done on desigming the library [17).

Tt d particuiar source language. it is not difficult o mplement a parsing module. As mennoned abhove the

- teatton module alrcady exists as part of KBEmuacs, This module has to be rewnten so that it operates i the
Aeencof the plan caleulus. However, there should be no particalar difficutty m doing this,

F U macs also contains a coding module analogous o the one needed by the knowledge-based tran-lator
Seeeh there are many improsements which need 1o be made in this maodile it should not He dute alt 1o

S entan adequate coding module which operates m the conte ool the plan o oalos
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should be straghttorward, Cliche abstraction is driven by the speciatization links in the cliche library, Cliche
abstraction s partcularly casy becanse it follows these links 1 the muny-to-onc direction.

There has also been no atempt o implement the cliche specializaticn module. ke cliche abstraction, cliche
specialization is diiven by the specialization links in the cliche library.  However, cliche specialization is harder
than cliche abstraction because numerous design decisions have to be made when choosing a path through the
specialization links in the one to many direction. [tis expected that, like Cobbler, the cliche specialization module
will use a varicty of estimates and heuristics in order to make design decisions. Also like Cobbler, design decisions
detected during cliche abstraction will be used to guide cliche specialization in situations where these heuristics
fail to be applicable.

In many ways, the central module in Fig. 22 is the recognition module. Work on this moedule has been
underway for several years. Recognition can be viewed as a parsing task. FFrom this vicwpoint, the cliche library
is a grammar which can be used to derive pluns for programs. In order to determine which cliches were used to
construct a given plan onc needs to parse the plan. "This would be a straightforward task it it were not for the fuct
that the plan for a program is a graph rather than a string, and cliche instances correspond to subgraphs in the
plan rather than substrings.

As a first step toward solving the recognition problem, Brotsky [6] implemented 4 parser which is able to
cthiciently parse flow graphs (a restricted form of acyclic directed graph) given a flow graph grammar. Currently,
Zclinka {29] is implementing an cxperimental recognrition module which utilizes this graph parser.  Further
rescarch is required in order to develop effective methods whereby the knowledge-based translator can deal with
invomplete recognition.

Once the implementation of the components described above has been completed. it will be possible to use
them to construct a general purpose, knowledge-based translator.  As mentioned above. a key feature of this
system is that it will be data driven with most of its knowledge embedded in the cliche library. Additional
rescarch will have to be performed in order o discover how best to represent the heuristics which arc an cssential

part of the specialization compoenent and to a lesser extent of the coder component.

VI1I - Related Work

There are several arcas where active work is in progress on translators.  However. essentially all current
translators operate via transhiteration and refinement.  Some translators (c.g.. optimizing compilers) do a
signtficant amount of global analysis of the source program. However, it is not clear that any program translator
takes the step of attempting o obtain an abstract understanding of the computation being performed by the

program as a whole.

Compors

Compilers e the most comime nexemple of transhators, They have been well developed over the vears and
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transliteration and refineinent. ‘The source language is transhicerated (via parsing and syntax directed translstion) .. h
into an intermediate language which is analogous to a machine language. Relinements foptimizations) are then
applicd o this intermediate representation.  Finally, the intermediate language is transhierated into the actiral .
target language.  The current developments in compiler rescarch [30) indicate that the basic approach to K¢
compilation outlined above is still adhered to. -
However, over the years, two trends in compiler rescarch have been moving m the direction of abstraction and .
reimplementation. One trend is the development of intermediate representations which look more like data flow
diagrams and less like particular machine languages. ‘These more abstract representations facilitate the
construction of families of compilers which producc output for a varicty of target machines.  They also facilitate
the manipulation of the program when optimizations are being applied. In particular, they makes it casier to keep -
ek o the dat ; -4
track of the data flow in a program. n
Another trend is toward more powerful optimizations which require a greater understanding of what is going -
. . . . . . . . . . V'.
on in a program. Classic peephole optimizations such as locating patterns of instructions for which a special target
instruction is available operate in a very local way without any understanding of context.  More powerful -3
optinizations such as removing an invariant expression from a loop require a general understanding of the .
surrounding data flow and control flow.  Optimizations such as strength reduction additionally require an %
i i ; e w_ow e .
understanding of the mathematical properties of the basic operators (¢.g., "+ and "e"'), P
The kind of analysis which underhies complex optimizations 1s a step toward creating an abstract summary of ) -
the program being compiled. However, it is only a small step in this direction because the information obtained N
by analvsis is not very abstract. The only abstraction is away from particular data flow and control flow constructs. .
In additon, the analysis is narrow in scope, aiming only to gather enough intormation to answer a few specific f
~
questions about the program. No attempt is made o obtain a general understanding of the computation N
pertormed by the program. N
S5
Compiling for Parallel Machines o
ihe problem of compiling a conventional programming language so that it runs cfficiently on a parallcl '-
machinc highlights the strengths and wecaknesses of current approaches to optimiization. Consider compiling the :j:
Fortran program fragment in Fig. 23 for a vector machine. The fragment is a tiply nested 1oop which computes g
the product of two NxN matrices. y
DO 100 J = 1, N s
DO 100 I = 1, N -
DO 100 K = 1, N ol
C(1,3) = C(1,9)+A(1,K)*B(K,J)
100 CONTINUE
- L)
fag. 23, Loops performming matrix multiplication, - : Ky
Y
_ . : o
Fhe foops e Dies 23 can be etticientdy executed on aecalar machime. Unforte natebe thes canmot be ettic il Nt
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N exccuted on the typical vector mache. 'The problem is that cach cvele Gafier the fiest) of the mncrmost loon uses
the value computed on the prior cyele feaving litde room for scctorization. However, 1t the loops are
mterchanged so that the K loap is outerinost, then they can be efticiently exccuted on a vector machine.

I'he discussion in [2] shows how a compiler for a vector machine can automatically interchange loops i order
to amprove the cfficiency ot the code produced.  Interchanging two loops changes the order in which

J computations arc performed.  Many subcomputations which were performed in the order S1.52 before the

3 mterchange will be performed in the order $2 S1 after the interchange. An interchange is correctness preserving

| as long as nothing in the original program cither requires that S2 follow S1 or prohibits S2 from preceding S1

A global analysis of the loops in question is a key part of the loop interchange optimization. The compiler

must obtain an understanding of the data dependencics between array clements in the loeps.  This requires an

R ORI T ] L A A e TR N 1 NP I S,

undeestanding of the data flow involving the arrays (i.e.. A, B. and C).  {t also requires at least a pardal

[F R U

understanding of the interaction between the loop iteration variables and the index expressions which select array

»

clements.

In Fig. 23, the index expressions are very casy to understand. However, the index expressions in a loop can be
arbitrarily complex. For example, they may be functions of the input data. The analysis of index expressions
used by the loop interchange optimization described in [2] is limited 1o situations where the index expressions are

- linear functions of the loop iteration variables,
" An interesting aspect of loop interchange in particular, and compiler optimizations in general, is that they are

deliberately designed to be narrow in scepe and independent of whatever computation is being performed. ‘This

has the advantage that the various optimizations can be applied in a wide varicty of contexts without the need for
any special knowledge about the particular algorithms being used. However, it has the disadvantage that the
optimizations cannot utilize special knowledge about the particular algorithms being used.

Given the algorithm independent nature of optimizations in general, the fevel of object code cfficiency which
can be achicved is very impressive. However, there are definite limits to the efficicncy which can be achicved.
For example, consider compiling Fig. 23 for a highly parallel machine which has many independent processors.
For this kind of machinc. optimizations such as loop intcrchange are not sutticient to produce cfficient code. The
problem is that for a multiple processor machine, the standard matrix multiplication algorithm is simply the
wrong algorithm to use. Special algorithms for matrix multiplication have been develaped which are much more
cfficicnt when run on a multiple processor machine.

In order to create really good code for a multiple processor machine a compiler would have to recognize that
matrix multiplication was being performed in Fig. 23 and then replace the standard algorithm with one of its
multiple processor counterparts. The lack of compilers which can make this kind of transformation significantly
limits the usability of multiple processor machines. In order to make full use of these machines, programmers

have to rewrite their programs in special languages using new algorithms.
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Voo High Tevel anguage Compilers

A third category of compilers is compilers for general purpose very high lesel langoages. A number of such
Linotazes have been designed (e.g., SETT22) Gisc 31 and V12D These Languages ditter from high Tevel
Eacuages in that they are more abstract. A good example of this ditference is the veatment of data structures,
Herh tevel languages provide facilities so that the progrianmer can specify the exact details of how data structures
Jioald be implemented.  In contrast, very high level Tanpuages typically sepport only a few universal data
structures such as sets and mappings. All decisions about how o implement a given set or mapping cfficiently arc
icttap o the very high level language compiler. This simphifies what the programmer has to do by remosing large
parts afthe programming task from consideration.

U nfortunately, constructing a compiler for a general purpose very high level language which produccs elficient

chect code has proved very difficult. While these compilers are the subject of active rescarch, it is not cleur that

-"x"- AR

siich g compiler can be said to exist even in a rescarch sctting.

4 ¢ e

The SETL. compiler [11] is implemented more or less along traditional lines with the addition of a special

cormnonent which selects data structure implementations. However, the key technigue which is being pursued as

et

@ buis for very high level language compilers is refinement through transformation [3),[12]. In this approach a

v 6 s
v -

very high level language source program is progressively refined into an efficient target program by applying a

LT I e A

sequence of correctness-preserving transformations. The net efiect of the transformations is to replace all of the @
daistect coneepts (e.g., set) in the source with concrete concepts (e.g.. record or array) in the target. The key
prohicm (which has so far resisted solution) is that therc arc a vast number of ways in which a source program can
bovnstormed and it is very hard to decide which ones will lead to acceptably efticient results.

{2 >fincment through transformation is basically an example of the transliteration and refinement approach: or
rathes just refinement. Using transformations has several advantages. In particular, cach transformation typically
embodics a single implementation decision and is straightforward to understand in isolation. Further, since each
transtonmation is correctness-preserving it is clear that the result produced will be correct.

What 1s lucking in the transformational approach is a generaf strategy for making overall design decisions. It is
n-¢clear that it is possible to make these decisions on a local basis as individua! transformations are applied. One
alrerate approach would be to pursue all of the major choices, compiling a given program many different ways

o nl then pick the implementation which is best [14]. However. it is not clear that this approach can be practically

X P

oo piad 1o complex programs where large numbers of choices have to be made. .
>
‘1.ether approach which has not yet been tried would be to use abstraction and reimplementation as the basis j,'*.

-i

fo1 <hoice. The goal would be to recognize patterns of computation in the source program which suggest that )
fn

prticidar design choices should be used. A strategy would still be required for selecting between contlicting <
siocestions. However, this strategy could benefit from having a high level description of the conflict. e '—‘—1
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Source-to-Nowrce Translation

A number of source-to-saurce program translators exist. However, as a group, they are not as well developed

Ly

as compilers and relativety hude has appeared in the literature about them. It scems that alt current

t an e a4 I_W‘T—W,ﬂ
o,
o .

source-to-source translators operate via transliteration and refinement doing relatively littde refincment.

f Unfortunately, source-to-source translators tend to be incomplete and incorrect. Most of them handle only
part (around 90%) of the source language. Further, relatively fow source-to-source translitors correctly handle the
sub-language they arc applicable to.

As discussed in Scction I1, both of these problems stem from difficultics in transliteration. Source language

TAOW W,

constructs which cannot be reasonably transliterated are not supported. {urther, transhiteration methods which
work most of the time, but not all of the time, arc used as if they worked all of the time,
I addition to the probiems above, when measured by the criteria of readability, the output of most translators

is not particularly good. Although scrviceable, the output produced scldom comes anywhere near the goal of

being what the programmers would have written had they been writing in the target language.

Due to the difficulties above, it is not accurate to refer to typical source-to-source translation systems as
automatric systems. It is more accurate to describe them as human-assisted translation systems. In order to obtain
correct (let alone acsthetic) output. human intervention is usually required. The user has to edit the source
program (to remove untranslatable constructs) and/or the target program (to correct errors and improve the
translation).

As a straightforward example of a translator, consider the Lisp 1.6 to Interlisp transiator implemented by
Samet{21]. This transiator operates purely by transliteration. It does no refinement.  Although reasonably
efficient output is produced, the translator makes no attempt to create aesthetic output. In particular, there is no
attempt o create Interlisp-style output. Rather, a set of functions is defined in Interlisp which, as much as
possible, allows interlisp to simulate lisp 1.6.  For example, instead of translating the source program into

Interlisp syntax, the Interlisp reader is modified so that it can read in a program in Lisp 1.6 syntax. In [21], Samet

identifics a number of features of Lisp 1.6 which his translator cannot handle. "The user is required to edit the
source program in order to climinate these features. Samet also describes several features of Lisp 1.6 which are
translated in ways which arc often, but not always, correct. The translation produced has to be carefully tested in
order to check that these over-simple transliterations have not led to any problems.

At first glance. it might appear that translation between two dialects of Lisp should be casy. However, this is
not the case. In fact, Lisp supports a nuinber of features which are spectacularly difficult to translate.  For
cxample. a Lisp program can construct a new Lisp program and then execute this new program.  Consider a
I.isp 1.6 progriam which constructs a Lisp 1.6 program and then calls it as a subroutine. The program would have
to he translated into an Interlisp program which constructs an Interlisp program. 1t is very unlikely that this kind

- ol transhation could be performed without using abstraction and reimplementation of the most powcertul kind.
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P
readable output. However, it deliberitely attempts (o create Fortrmssty le entput as opposed o Lispstyle output. RV
The translation is supported by a sct of functions which wlow Lisp to simulate the Fortran rantime environment. .
This approach introduces a significant overhead which couses a trinslated program to run several umes slower
than the Fortran source program. Pitman’s translator is far superior to Samet’s translator in that, except for onc or
two very obscure features, all of the features of Fortran are translated correctly all of the time. -
A third translator in this vein is the Fortran to Jovial tanslator implemented by Boxer [4]. Like the translators .
above, it operates purely by transtiteration. ‘The output of the translator is not intended for human consumption
and no attempt is made to make it particularly readable or to render it in Jovialstyle. (The examples in {4] N
mdicatz that the outpat is similar in style to the Ada shown in Fig. 3.) ‘The tanslator only handles a subsct of k
Fortran. It succeeds in translating from 90% o 100% of the typical input module. User intervention is required to "
complete the translation, %
‘The Lisp to Fortran translator developed by Boyle [5] is interesting because itis based on the transformational ',:
approach discussed in the fast subsection. The translator handles an applicative subset of Lisp which does not . d
include such hard to translate features as the ability to create and cxecutc new Lisp code. Readability is not a goal E’
of the translation.  Rather, rcadability of the output is abandoned in favor of producing rcasonably cfficient "
Fortran code. As discussed in [S], this translator is perhaps best thought of as a compiler of Lisp into Fortran X
rather than a source-to-source translator. e ®
Bovle's translator operates by translitcrating the Lisp source into an cxtension of Fortran and then ke :
transforming this extended Fortran into ordinary Fortran. The transforimation process s controlled by dividing it -\_
into a number of phases. Each phase applies transformations sclected from a small set. ‘The transforimations S
within cach sct are chosen so that conflicts between transformations will not arise. h
Bovie's translator is successful not because it has solved the problems faced by very high level language ‘
compilers, but rather becausc it succeeds in avoiding them. First, compared to SETL., Gist. and V, Lisp is not very ',t:
abstract. Therefore there are fewer complex design decisions which have to be made. Second. the design :':
de . -acns are small enough in number that it is possible to find a fixed set of choices which works reasonably well
for &1 of the Lisp programs being translated. These fixed choices are embedded in the translator through the g
choico of phases and transformations. Lists arc always implemented the same way. Recursion is always simulated ".-'-
in the same way.  This leads to the production of Fortran programs which are reasonably ¢fficient. but typically ’
far tram optimally cfficient. y
N
Convacrcially Available Source-to-Source Translators :
]
Pioaddition to the in-house translation systems described above, a number of translators arc comme:cially .‘
a*aib:hle. One arca where several translators are available is translating betweer assembler languages for various |.
mit g rocessors, The discussion in [25] compares three commercial available translators between 8080 assembler :t: E
arc S assembler. Anoin-house attempt at a translator between 780 assembler and MCOR0Y assombler s b ‘:’,
Ao DN oo taisbatons opetate promnaads B tasldernation vnoon e taction Boanstuction busis -:..:
.‘
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and do litde or no refinement. “They all operate on only a subscet of the source Livguage and use simplistic
transhiterations which are not correct in all contexts.  Human intervention is otten required in order to obtain
correct cutput.  ‘The wanslations produced are also quite incfficient, consisting of fromn 3 to 6 times as many
instructions as the source. One of the 8080 to 8086 translators (X1.186 from Digital Rescarch Inc.) uses global
data and control flow analysis in order to guide the choice of transliteration for instructions. It produces output
which is significantly more cfficient and more often correct than the other translators.

Another arca where a number of translators arc available is translating between various languages used for
business data processing (c.g., Cobol, RPGII, and P1.71). Numecrous transiators exist (for cxample. sce [31]. [32]).
Substantive information about the internal operation of these translators is hard to obtain, however several things
arc clear from their external descriptions. "They do not handle the whole source language. In gencral, they only
succeed in translating 90% to 95% of typical source programs. ‘They do not always produce correct output.
(In [32]. the user is specifically instructed to test and debug the translations produced.) Examples suggest that the

output is not particularly rcadable, and that the output was probably crcated primarily through transliteration.

Code Restructuring

An interesting subcategory of source-to-source translators is systems which translate a program from a
language back into the same language. The goal of these systems is to create output which is more rcaduble than
the input. In particular, these systems typically seck to render unstructured source programs in a structured form,
Given that the source and target languages are the same, it is a relatively straightforward matter to make sure that
the entire source language is handled correctly. However, it is far from straightforward to produce output which
really s significantly more rcadable than the input. Many of these systems are little more than pretty printers and
are of marginal use. However. at lcast one system (Recoder [7]) is a true translator and creates highly structured
output.

Recoder operates on Cobol programs in three stages.  The first stage creates a flow chart-like graph
representing the source program.  The key feature of the graph representation is that all control flow is
represented by explicit arcs which are independent of the Cobol constructs which were orginally used to
implement the control flow. The second stage applics correctness-preserving transformations to the graph in
order to rearrange the graph into a structured form. The third stage creates a new Cobol program based on the
rearranged graph.

Recoder represents a step toward the absti «ion and reimplementation approach because the abstraction
which it uses is clearly the driving force behind the translation. However, the step is strictly Iimited by a number
of factors. ‘The graph representation used is not very abstract.  The only abstraction is away from particular

control flow constructs. No attempt is made to recognize the algorithms being used in the source program or to

abstract away from them.
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\ctwral [aneuage Translation AT
vionteresting arca which is closely related o program translation 1s natural kinguage translation. Work on o,

| ntuial language tanslation started by using transliteration and, i a quest for high quality output, is now moving .:
i m the direction of translation via abstraction and reimplementation. .’:
\hinost all of the natural language translation systems which arc in actual regular use today operate via e

tanshiteration and refinement (see [26]). In general, these systems produce output which is very rough, but which ": ‘
i readable o a person who is familiar with the subject arca. A good example of such a system is the Paho \'

svstem [26] which translates from Spanish to English. :-_ X
Puho operates by transliterating the source text on a sentence by sentence basis. This transliteration is carried “
out for the most part on a word by word basis with a small amount of inter-word analysis to take care of issucs :::?
such as providing correct translations for idioms, and rearranging the adjectives in a noun phrase. (Adjectives "

follow nouns in Spanish whereas they precede nouns in English). The practicality of this kind of transliteration :
depends heavily on a number of convenient correspondences between the basic structure of Spanish and English p
(c.g.. the near identicality of word order, and the fact that Spanish pronouns are more heavily marked for gender :?'_'_
than English pronouns). -:'_.-:
Puiho is not capable of refining the English it produces. Manual post-cditing is required in order to generatc an »

aceeptable translation. The biggest weaknesses of Pahio ts that it knows very litde about syntax and nothing about @ ' _

the meanme of the sentences being translated. Further, it has no knowledge of interactions between sentences. R

In the quest for higher quality transtations than the ones generated by systems like Paho, translators are now

heing developed which operate more in the vein of abstraction and reimplementation. A good example of such a ::;"

transhator s the Furotra system [15] which is currently being developed to translate between the major western
FFuropean languages. Eurotra uses semantically annotated syntactic parse trees as an abstract representation for
the sentences being translated.  Analysis (abstraction) and synthesis (reimplementation) components convert
source languages into parse trees and parsc trees into target languages respectively.

i-urotra is not a truc abstraction and reimplementation system because the annotated parse trees arc not
independent of the source and target languages. Procedural transfer components are required in order to convert a
sour e language specific parse tree into a target language parse tree.

fois expected that BEarotra will produce significantly better output than Paho. However, it is expected that
Farotia will sull fall short of high quality translation. In particular, although Eurotra has much more syntactic
understanding than Paho, its semantic and inter-sentential understanding is still quite weak.

In order to achieve high quality translation, natural language translation systems have to be able to oblain an
m-depth understanding of the text being translated. Onc approach to this is the recent work on knowledge-based
machene translation {sec [8)). This work has succeeded in demonstrating natural language translation via -
abstie non and reaimplementaton. The abstract descnption used by this approach is a linguage independent =027
cop i centation ol the conceptual dependencies inthe et Knowledpe-bas d oochime oapshition s mrendod to

e st analozing the entre sotree ol in onder o determe b et and dhien reespres g s
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meaning in the target language using the syntactic structure of the source as o guide for what to say wheun.

s

Although knowledge-based machine translation holds the promise of generating very high quality output,
more work has to be done before a translator following this approach will be practical.  In particular, as with
translation via abstraction and reimplementation in general, there is a significant probiem with incompletencss.

Considerable further rescarch has to be done before it will be possible to achicve anywhere near a complete

understanding of arbitrary passages of source text. However, perfection is not required. Human translators are

unable to translate technical texts unless they understand the technical arca being discussed.
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